Τετάρτη 25 Μαρτίου 2015

Καλώς ήλθατε!  


  











ΣΧΟΛΙΚΟ ΕΤΟΣ 2020 - 2021

16 - 3 - 2021

Στοιχεία για την εργασία στη Στατιστική που θα μου παραδώσετε θα βρείτε στον παρακάτω σύνδεσμο:


2 - 3 -2021

Για το επόμενο μάθημα στην άλγεβρα έχετε να απαντήσετε στις παρακάτω ερωτήσεις (κάντε κλικ πάνω στην παρακάτω εικόνα για μεγέθυνση και καλύτερη εμφάνιση των ερωτήσεων) :

13- 1 - 2021



12 - 1 - 2021

Καλή χρονιά!!
Για το διαγώνισμα στο Πυθαγόρειο θεώρημα που θα γράψουμε την Τρίτη 19 - 1 -2021 να διαβάσετε :
Α. Την διατύπωση ( κανόνας) του πυθαγορείου θεωρήματος και του αντίστροφου του πυθαγορείου ( πορτοκαλί πλαίσια στην 1.4 παράγραφο της γεωμετρίας).
Β. Την ερώτηση κατανόησης 1 της παραγράφου 1.4 της γεωμετρίας.
Γ. Τις ασκήσεις στο ηλεκτρονικό μάθημα : ΑΣΚΗΣΕΙΣ ΣΤΟ ΠΥΘΑΓΟΡΕΙΟ 

23 - 12 - 20

To σημερινό ηλεκτρονικό μάθημα θα το βρείτε στον παρακάτω σύνδεσμο:


Για μετά τις γιορτές έχετε την άσκηση 7 από την παράγραφο 2.3 (Προβλήματα) της άλγεβρας. Μην σας παραξενεύει που είναι άσκηση από την άλγεβρα! Λύνεται με πυθαγόρειο θεώρημα!!


Για το διαγώνισμα στο πυθαγόρειο θεώρημα που θα γράψουμε μετά τις γιορτές καλό είναι να διαβάσετε από την παράγραφο 1.4 (Πυθαγόρειο θεώρημα) της γεωμετρίας του σχολικού σας βιβλίου: ΗΛΕΚΤΡΟΝΙΚΟ ΒΙΒΛΙΟ : 1.4 ΓΕΩΜΕΤΡΙΑΣ

Καλές γιορτές σε όλους σας!!


22- 12 - 20

Δείτε λίγο το παρακάτω μικροπείραμα από τον λογαριασμό μου στο Φωτόδεντρο του Υπουργείου Παιδείας σχετικό με το πρόβλημα "Ντουλάπα" που είδαμε στο σημερινό μάθημα.


Για το επόμενο μάθημα έχετε τις ασκήσεις  35 , 36 , 49 , 50 , 52 από το παρακάτω φυλλάδιο


10 - 12 - 2020

Για το επόμενο μάθημα έχετε την ερώτηση κατανόησης 1 και τις ασκήσεις 5 , 6, 9 από την παράγραφο 1.4 (Πυθαγόρειο θεώρημα) της γεωμετρίας του σχολικού βιβλίου.


9 - 12 - 2020

Αύριο Πέμπτη 10-12-2020 θα κάνουμε και τις δύο ώρες γεωμετρία. Έχετε να διαβάσετε τον κανόνα  και τον τύπο του πυθαγορείου θεωρήματος από τα δύο πορτοκαλί πλαίσια της παραγράφου 1.4 της γεωμετρίας.( δες και στην παρακάτω εικόνα. Πατήστε κλικ πάνω στην εικόνα για μεγέθυνση).


Έχετε επίσης τις ασκήσεις  1 και 2 από την παράγραφο 1.4 της γεωμετρίας



8- 12 -2020

Στο σημερινό μάθημα είδαμε μερικά ιστορικά στοιχεία για τον Πυθαγόρα τον Σάμιο και για το πυθαγόρειο θεώρημα. Χρησιμοποιήσαμε τον παρακάτω σύνδεσμο:


Επίσης από το παρακάτω ηλεκτρονικό μάθημα κάναμε το Α (Εισαγωγική δραστηριότητα) και το Β ( αρχείο Geogebra)


Μελετήστε αυτά τα που είδαμε. Δεν έχετε ασκήσεις.


3 - 12 - 2020

ΑΛΓΕΒΡΑ: Για το επόμενο μάθημα άλγεβρας ( για την Τρίτη 8/12) έχετε να μάθετε τον ορισμό για τους άρρητους αριθμούς που γράψαμε στο τετράδιο. Τον υπενθυμίζω κι εδώ:

Άρρητοι αριθμοί είναι οι αριθμοί που δεν μπορούν να γραφούν ως κλάσμα. Στην δεκαδική τους μορφή έχουν άπειρα δεκαδικά ψηφία μη περιοδικά. Τέτοιοι αριθμοί είναι οι τετραγωνικές ρίζες που δεν βγαίνουν ακριβώς.
Επίσης έχετε τις ασκήσεις 1 ,2 , 3 από την παράγραφο 2.2 της άλγεβρας.


ΓΕΩΜΕΤΡΙΑ : Για το επόμενο μάθημα γεωμετρίας ( για την Τετάρτη 9/12) έχετε να λύσετε το παρακάτω ηλεκτρονικό τεστ.



 
2- 12  - 2020

Για το αυριανό μάθημα στη γεωμετρία έχετε τις ασκήσεις 4 , 5 , 6 , 14 από την παράγραφο 1.3 της γεωμετρίας.
Υπενθυμίζω ότι τις υποχρεώσεις σας για την άλγεβρα θα τις βρείτε παρακάτω στην ημερομηνία 1-  12-2020


1 - 12 - 2020

ΓΕΩΜΕΤΡΙΑ: Για το επόμενο μάθημα στη γεωμετρία την Τετάρτη 2- 12 - 2020 έχετε τις ερωτήσεις κατανόησης 1 και 2 της παραγράφου 1.3 της γεωμετρίας από το σχολικό βιβλίο.

ΑΛΓΕΒΡΑ : Για το επόμενο μάθημα στην Άλγεβρα την Πέμπτη 3 - 12 - 2020 έχετε τις ασκήσεις 3 και 4 του σχολικού βιβλίου από την παράγραφο 2.1 της άλγεβρας. Επίσης  τις 6 πρώτες ερωτήσεις πολλαπλής επιλογής από το ηλεκτρονικό τεστ που θα βρείτε στον παρακάτω σύνδεσμο :


25 - 11 - 2020

Υπενθυμίζω ότι αύριο Πέμπτη 26 - 11 - 20 έχουμε μία ώρα Άλγεβρα και μία Γεωμετρία.

ΑΛΓΕΒΡΑ : Στην άλγεβρα μιλήσαμε για την τετραγωνική ρίζα. Πρέπει από την παράγραφο 2.1 να γνωρίζετε τον ορισμό της τετραγωνικής ρίζας. Να απαντάτε δηλαδή στην ερώτηση : "Τι ονομάζουμε τετραγωνική ρίζα ενός θετικού αριθμού α" ( πορτοκαλί πλαίσιο). Από ασκήσεις έχετε τις 1, 2 από την 2.1 της άλγεβρας.


ΓΕΩΜΕΤΡΙΑ: Στην γεωμετρία είδαμε τους τύπους των εμβαδών των βασικών γεωμετρικών σχημάτων ( παράγραφος 1.3 της γεωμετρίας). Μπορείτε να μάθετε αυτούς τους τύπους από το παρακάτω τυπολόγιο που υπάρχει στην πρώτη σελίδα του παρακάτω συνδέσμου:


Από ασκήσεις έχετε τις 1, 2, 3 , 13  από την παράγραφο 1.3 της γεωμετρίας



19 - 11 - 2020

Υπενθύμιση: Από την ερχόμενη εβδομάδα θα κάνουμε δύο φορές άλγεβρα και δύο φορές γεωμετρία. Συγκεκριμένα κάθε Τρίτη και Πέμπτη (την δεύτερη ώρα) άλγεβρα και κάθε Τετάρτη και Πέμπτη (την τρίτη ώρα) γεωμετρία.

ΑΛΓΕΒΡΑ: Για το επόμενο μάθημα έχετε την άσκηση 9 από την παράγραφο 1.4. 
Επίσης παρατηρήστε το παρακάτω κόμικ και απαντήστε στις ερωτήσεις που ακολουθούν. (με κλικ πάνω στην εικόνα μεγεθύνεται το παρακάτω κόμικ).
 

1. Δοκιμάστε αριθμούς και ακολουθήστε τα βήματα που ζητάει ο κύριος στο παραπάνω κόμικ. Τι παρατηρείτε;
2. Ποια εξίσωση παριστάνουν τα παραπάνω βήματα;
3. Λύστε την εξίσωση αυτή. Τι παρατηρείτε; Πως συνδέεται η λύση της εξίσωσης με το συμπέρασμά σας στο πρώτο ερώτημα;

ΓΕΩΜΕΤΡΙΑ : Για το επόμενο μάθημα έχετε τις ασκήσεις 1 , 2 , 3 από την παράγραφο 1.1 της γεωμετρίας.




18 - 11- 2020

Για το επόμενο μάθημα έχετε να λύσετε τις ασκήσεις : 5 , 6 , 7 , 8  από την παράγραφο 1.4 της άλγεβρας.


17- 11-2020

Για το επόμενο μάθημα έχετε να λύσετε τις ερωτήσεις κατανόησης 1,2 και τις ασκήσεις 1, 2, 3 από την παράγραφο 1.4 της άλγεβρας.


13 - 11 - 2020

Στο σημερινό μάθημα ασχοληθήκαμε με την παράγραφο 1.4 της άλγεβρας: Επίλυση προβλημάτων με χρήση εξισώσεων.


Μελετήσαμε το παρακάτω φύλλο εργασίας: ΑΠΟΒΑΡΟ ΦΟΡΤΗΓΟΥ

Για το σπίτι έχετε να συμπληρώσετε το παρακάτω φύλλο εργασίας που περιέχει ακόμη ένα πρόβλημα με εξισώσεις: Ο ΚΩΣΤΑΣ , Ο ΓΙΑΝΝΗΣ ΚΑΙ ΤΟ ΣΟΥΒΛΑΚΙ

Υπενθυμίζω λύνουμε το φύλλο εργασίας στο τετράδιο. Αν είναι εφικτό το εκτυπώνετε και το συμπληρώνετε. Σε κάθε περίπτωση δεν χρειάζεται να μου στείλετε κάτι ηλεκτρονικά. Πρέπει όμως να το έχετε λύσει για να μπορείτε να συμμετέχετε στο επόμενο μάθημα.

12 -11 - 2020

Στο σημερινό μάθημα μιλήσαμε για το πότε μια εξίσωση είναι αδύνατη και πότε ταυτότητα. Χρησιμοποιήσαμε τις εφαρμογές 3 και 4 του σχολικού βιβλίου στην παράγραφο 1.2.


Για το επόμενο μάθημα να λύσετε τα ερωτήματα 1, 2,3 ,4 , 7 ,8 από το ηλεκτρονικό τεστ που θα βρείτε στο : ΗΛΕΚΤΡΟΝΙΚΟ ΤΕΣΤ ΣΤΙΣ ΕΞΙΣΩΣΕΙΣ

Σημειώστε τις απαντήσεις στο τετράδιο σας και θα σας τις εξετάσω στο επόμενο μάθημα. Δεν χρειάζεται να μου στείλετε κάτι!


11 - 11 - 2020

Το σημερινό μάθημα θα το βρείτε : ΕΞΙΣΩΣΕΙΣ Α΄ ΒΑΘΜΟΥ
Για το επόμενο μάθημα να λύσετε τις εξισώσεις:

α) x +3x - 4 + 7x + 7 = 2x - 6 + x
β)  2( x - 2) +3 ( 4 - x) = 9 - x
γ) 4 - (x + 5) - 2( 1 - x) = 5( 2 - 3x)
δ) x - 4( 2 - 3x) + 5 = 1 - ( x - 2) + 3( x- 1)

Να μου αποστείλετε τις λύσεις στην Αποστολή εργασίας.




ΣΧΟΛΙΚΟ ΕΤΟΣ 2019 - 2020

Αγαπητοί μαθητές του Β1 τμήματος εγκαινιάζουμε την λειτουργία της Ηλεκτρονικής Τάξης σε αυτές τις στιγμές που τα σχολεία δεν λειτουργούν. Θα ανεβάζω εδώ θέματα ,λυμένες ασκήσεις , οδηγίες που θα αφορούν μια επανάληψη της ύλης που διδακτήκατε μέχρι εδώ. Στο άμεσο μέλλον θα συμπεριλάβω και βιντεομαθήματα.

ANAKOINΩΣΕΙΣ


Αύριο 1/4/2020  στις 13.00 ξεκινάμε το πρώτο τηλεμάθημα στον σύνδεσμο που αναγράφεται στο πρόγραμμα τηλεμαθημάτων που υπάρχει στην ιστοσελίδα του σχολείου μας
http://gym-simantr.chal.sch.gr/


5-5 - 2020

To σημερινό ηλεκτρονικό μάθημα ΕΜΒΑΔΟΝ ΚΥΚΛΟΥ


28 - 4 - 2020

 Το σημερινό ηλεκτρονικό μάθημα: ΜΗΚΟΣ ΚΥΚΛΟΥ


22 - 4 - 2020

To σημερινό ηλεκτρονικό μάθημα : ΕΦΑΠΤΟΜΕΝΗ ΟΞΕΙΑΣ ΓΩΝΙΑΣ


14 - 4 - 2020

Συνδεθείτε με το ηλεκτρονικό μάθημα στο Πυθαγόρειο θεώρημα που είδαμε στην σύγχρονη εκπαίδευση.  https://mosxoseclass.blogspot.com/p/blog-page_29.html
Από αυτό το ηλεκτρονικό μάθημα λύστε το Ηλεκτρονικό τεστ που περιέχεται στο τέλος (ΣΤ)


8 - 4 - 2020
  • Πατώντας πάνω στην παρακάτω εικόνα θα ανοίξει ένα αρχείο Geogebra με τίτλο "Γονείς και παιδιά". Πρόκειται για ένα πρόβλημα που λύνεται με εξισώσεις α΄ βαθμού.

Βήμα 1 : Πατήστε την επιλογή "Δοκιμές". Βάλτε τιμές στο τετραγωνάκι "Γονείς" και δοκιμάστε μέχρι να βρείτε την λύση του προβλήματος μέσα από διαδοχικές δοκιμές.
Βήμα 2 : Προσπαθήστε να λύσετε στο χαρτί σας το πρόβλημα με χρήση εξίσωσης.
Βήμα 3 : Πατήστε την επιλογή "Λύση" και παρακολουθήστε τη λύση του προβλήματος.
  • Πατώντας πάνω στην παρακάτω εικόνα θα ανοίξει ένα αρχείο Geogebra με τίτλο "Οι ποδηλάτες". Πρόκειται για ένα  ακόμη πρόβλημα που λύνεται με εξισώσεις α΄ βαθμού.

Βήμα 1 : Μελετήστε το πρόβλημα.
Βήμα 2 : Πατήστε πάνω στην επιλογή "προσομοίωση" παρακολουθώντας την κίνηση των ποδηλατών.
Βήμα 3 : Προσπαθήστε να λύσετε το πρόβλημα με χρήση εξίσωσης.
Βήμα 4 : Πατήστε την επιλογή "Λύση" και παρακολουθήστε τη λύση του προβλήματος.
  • Βιντεομάθημα : Επίλυση προβλήματος με εξισώσεις α΄ βαθμού



6 - 4 - 2020
  • Πατώντας πάνω στην παρακάτω εικόνα θα ανοίξει ένα αρχείο Geogebra με τίτλο "Περίμετρο τριγώνου"


Βήμα 1. Πατήστε την επιλογή "Εκφώνηση" και διαβάστε προσεκτικά την εκφώνηση του προβλήματος.
Βήμα 2 : Με την δεύτερη επιλογή "Οδηγίες" ακολουθήστε τις οδηγίες που σας υποδεικνύονται μετακινώντας το δρομέα μέχρι να βρείτε τη λύση.
Βήμα 3 : Προσπαθήστε να λύσετε το πρόβλημα με χρήση κατάλληλης εξίσωσης α΄ βαθμού.
Βήμα 4 : Με την επιλογή "Αλγεβρική Λύση" παρακολουθήστε τη λύση του προβλήματος.

  •  Επίσης δοκιμάστε και το τεστ αντιστοίχισης στις εξισώσεις:
              ΑΝΤΙΣΤΟΙΧΙΣΗ ΣΤΙΣ ΕΞΙΣΩΣΕΙΣ Α΄ ΒΑΘΜΟΥ


31- 3 - 2020


Στον παρακάτω σύνδεσμο θα βρείτε ένα ηλεκτρονικό τεστ στην τετραγωνική ρίζα. Μπορείτε να το λύσετε διαδραστικά online.

30 - 3 - 2020

Προσέξτε τα παρακάτω βιντεομαθήματα.Το πρώτο αφορά στην επίλυση εξίσωσης α΄ βαθμού.Το δεύτερο την επίλυση γεωμετρικών προβλημάτων με εξισώσεις.

Βιντεομάθημα 1: 



Βιντεομάθημα 2





24 - 3 -2020

Mε την επιλογή ΄Έγγραφα"  ( μετονομάστηκε σε "Αρχεία" )στα δεξιά μπορείτε να βρείτε τρία αρχεία σε Word με φύλλα εργασίας επανάληψης στην επίλυση εξισώσεων α΄ βαθμού. Θα χρειαστείτε τους κωδικούς που θα σας δοθούν για να μπείτε στον λογαριασμό OpenDrive. 
Στον φάκελο "Β΄ Γυμνασίου" επιλέξτε τον υποφάκελο "Επαναληπτικό υλικό 2019-2020" κι εκεί θα βρείτε το διδακτικό υλικό που σας ανέφερα.





(κλικ στις  εικόνες για να μεγεθυνθούν) 

18 - 3 - 2020

Ας ξεκινήσουμε υπενθυμίζοντας σας τα βήματα επίλυσης μιας εξίσωσης α΄ βαθμού. Αποτελεί ένα από τα βασικότερα μαθήματα στην Άλγεβρα για φέτος.

Βήματα επίλυσης εξίσωσης 1ου βαθμού :

1. Απαλοιφή παρονομαστών.  ( Βρίσκουμε το Ε.Κ.Π των παρονομαστών και πολλαπλασιάζουμε όλους τους όρους της εξίσωσης και στα δύο μέλη επί το Ε. Κ.Π.)

2. Απαλοιφή παρενθέσεων. ( Γίνεται με την εφαρμογή της επιμεριστικής ιδιότητας ή με τον κανόνα απαλοιφής παρενθέσεων όταν μπροστά της υπάρχει πρόσημο - ή +. Βλέπε στο μάθημα με ημερομηνία 18 - 9 - 2014 πιο κάτω).

3. Χωρίζουμε γνωστούς από αγνώστους.

Ας δούμε παρακάτω μια μυθοπλασία για την καλύτερη απομνημόνευση της διαδικασίας του χωρισμού γνωστών από αγνώστων για την εξίσωση : 2x - 5- x = 9 - 4x + 7. 


Οι όροι 2x ,- 5 , -x , 9 , -4x, 7 αποφάσισαν να κάνουμε ένα ρίβερ πάρτυ στις όχθες του ποταμού Ίσον. Τοποθετήθηκαν σε διάφορα σημεία και στις δύο όχθες του.
2x - 5 - x = 9 - 4x + 7. Τελικά μετά από αλλεπάλληλους καβγάδες μεταξύ τους ήταν αδύνατο να συνυπάρξουν όροι διαφορετικών πεποιθήσεων. Αποφάσισαν λοιπόν να χωριστούν σε ομοειδείς ομάδες. Στην αριστερή όχθη θα κάτσουν μόνοι άγνωστοι όροι και στη δεξιά οι γνωστοί. Ένας βαρκάρης υπήρχε κατά μήκος του ποταμού Ίσον. Όποιος όρος μεταφερόταν από τη μία όχθη στην άλλη πλήρωνε ως αντάλλαγμα στον βαρκάρη που τον περνούσε απέναντι τι λέτε; Την αλλαγή του προσήμου του. Καταδεχόταν να αλλάξει το πρόσημό του και μόνο τότε ο βαρκάρης τους περνούσε στην άλλη μεριά. Όσοι τώρα δεν χρειαζόταν να αλλάξουν όχθη αλλά παρέμεναν σταθεροί κι ακλόνητοι στη θέση τους δεν είχαν δοσοληψίες με τον βαρκάρη-μεταφορέα. Εκείνοι ήταν οι τυχεροί γιατί το πρόσημό τους δεν το πείραζε κανείς. Έμενε το ίδιο κι απαράλλακτο! Έτσι σε λίγο κατανεμήθηκαν διαφορετικά :
2x - x + 4x = + 5 + 7 - 9
Από τότε δεν μάλωσαν πια καθόλου. Πέρασαν ένα βράδυ υπέροχα δίπλα στο ποτάμι!


4. Αναγωγή ομοίων όρων.

5. Διαιρούμε με το συντελεστή του αγνώστου.


Παράδειγμα :    Να λύσετε την εξίσωση :  3( x - 4) - 2( 1 - x) = x + 2

Λύση : 3( x - 4) - 2( 1 - x) = x + 2

3x - 12 - 2 + 2x = x + 2   (Κάναμε απαλοιφή παρενθέσεων εφαρμόζοντας την επιμεριστική ιδιότητα).

3x + 2x - x = 2 + 12 + 2   ( Xωρίσαμε γνωστούς από αγνώστους ΠΡΟΣΟΧΗ : Όροι που παραμένουν στο ίδιο μέλος δεν αλλάζουν πρόσημο. Όροι που μετακινούνται από το ένα μέλος στο άλλο , αλλάζουν πρόσημο).

4x  = 16         ( Κάναμε αναγωγή ομοίων όρων).


4x         16  
---  =   ----                 ( Διαιρέσαμε με τον συντελεστή του αγνώστου που είναι το 4).
 4          4 


x  = 4 

Άσκηση για το σπίτι : 

Να λύσετε τις εξισώσεις : α) 3( x - 2) + 2x - 4 = x - 2(x - 1)

β) 1- (x + 3) = 2x + 1



3-10-2019

Εκτέλεση πράξεων :

Για να απλοποιήσουμε αλγεβρικές παραστάσεις , εκτελούμε τις πράξεις με την παρακάτω σειρά:

1. Επιμεριστική ιδιότητα
2. Αναγωγή ομοίων όρων.

Παραδείγματα

1. Να απλοποιήσετε την παράσταση : 3 ( x - 4) - 4x + 7

Λύση. 1ο βήμα : Εφαρμόζουμε την επιμεριστική ιδιότητα. 

3 ( x - 4) - 4x + 7 = 3x - 12 - 4x + 7

2o βήμα : Κάνουμε αναγωγή ομοίων όρων.

3 ( x - 4) - 4x + 7 = 3x - 12 - 4x + 7 = 3x - 4x - 12 + 7 = -1x - 5 = -x - 5


2. Δίνεται η παράσταση : Α = 2 ( 3x - 5) + x - 5 ( 2 - x) - 9
    α.  να την απλοποιήσετε   , β.  να υπολογίσετε την τιμή της όταν x = 4

Λ ύση  α.  Α =  2 ( 3x - 5) + x - 5 ( 2 - x) - 9 = 6x - 10 + x - 10 + 5x - 9 = 6x + 1x + 5x - 10 - 10 - 9 = 12x - 29

β. Για να υπολογίσουμε την τιμή της παράστασης  για x = 4  , θα θέσουμε όπου x τον αριθμό 4 στην τελική απλοποιημένη μορφή της Α.

Α = 12x - 29 = 12 . 4 - 29 = 48 - 29 = 19

Άρα η τιμή της παράστασης Α  για x =4  είναι 19.


30-9-2019


Aναγωγή ομοίων όρων 

3 φουντούκια  +  5 φουντούκια  =  8 φουντούκια
3       x              +  5        x              =  8     x


Παραδείγματα :  3x + 4x = 7x 
                             5x - 9x = - 4x
                             4x - 5y + 2x - 6y - 3x = 4x + 2x  - 3x -5y - 6y = 3x - 11y

Επιμεριστική ιδιότητα: α(β + γ) = αβ + αγ
                                      α(β - γ) = αβ - αγ


Παραδείγματα:  3(x + 4) = 3x + 12
                                         -4(x - 6) = -4x + 24
                                         -5( 4 - x)= -20 + 5x
                                         5( 1 - 3x) = 5 - 15x
                                        -6( x + 2) = -6x-12


24-9-2019

Μεταβλητή είναι ένας αριθμός που δεν είναι σταθερός αλλά μπορεί να μεταβάλλεται. Τον συμβολίζουμε με ένα μικρό γράμμα του ελληνικού ή λατινικού αλφαβήτου. π.χ  α,β, γ , x ,y .z , t.

Προσέξτε τα παρακάτω παραδείγματα :

1. Σε ένα αγρόκτημα ζουν 30 κατσίκια και πρόβατα.

     Αριθμός των κατσικιών :  x    ( μεταβλητή)
     Αριθμός προβάτων :  30 - x    (αλγεβρική παράσταση).


2. Ο Νίκος είναι κατά 5 εκατοστά ψηλότερος από τον Κώστα.

      Ύψος Νίκου :   x          ( μεταβλητή)
      Ύψος Κώστα :  x - 5    (αλγεβρική παράσταση).




23-9-2019

Προσέξτε τα παρακάτω λυμένα παραδείγματα :




20-9-2019

Καλή σχολική χρονιά στους μαθητές μου του Β1 τμήματος του γυμνασίου Σημάντρων. Ξεκινήσαμε φέτος με μια επανάληψη από την Άλγεβρα της Α γυμνασίου. Υπενθυμίζω λοιπόν μερικές βασικές έννοιες.

Aπαλοιφή παρενθέσεων :

1. Όταν μπροστά από μία παρένθεση υπάρχει το πρόσημο συν (+) , απαλοίφουμε την παρένθεση και το συν και γράφουμε όλους τους όρους όπως είναι. 
π.χ : +( -3 + 7 - 6 + 9) = -3 + 7 - 6 +9



2.  Όταν μπροστά από μία παρένθεση υπάρχει το πρόσημο μείον (-) , απαλοίφουμε την παρένθεση και το μείον και γράφουμε όλους τους όρους με αλλαγμένα πρόσημα. 
 π.χ : -(-3 +7 - 6 + 9) = + 3 - 7 + 6 - 9

Προτεραιότητα πράξεων 

1. Πράξεις μέσα στις παρενθέσεις
2. Δυνάμεις
3. Πολλαπλασιασμοί - Διαιρέσεις
4. Προσθέσεις - Αφαιρέσεις.

Δοκιμάστε να βρείτε τις τιμές των παραστάσεων :

α. 4 . (-7) - 21: (-7)+3 . 6
β. 2. ( 5 - 7 )+ (12 - 20 ): ( - 4)
γ. 3 . 5 - 2 . (-6- 4 )+32 : ( -8)
δ. 11 . (-4) +20 : (-5)+36 :(-9)-6 . (-4)
ε. (-8+4-7+12). ( - 5 ) +(9-15):(-3)

διότητες δυνάμεων.

         μ         ν               μ + ν         
1.  α     .   α         =    α


           μ       ν               μ - ν         
2.  α     :   α         =    α


                   ν                ν        ν
3.   ( α . β )           =  α    .   β


                   ν            ν      ν
4.  ( α : β )        =  α   :  β

                   
           μ   ν                μ . ν
5.  (α     )          =   α



ΣΧΟΛΙΚΟ ΕΤΟΣ 2015 - 2016

3 - 2 - 2016

Συνάρτηση

Στην καθημερινή μας ζωή υπάρχουν μεγέθη που δεν εξαρτώνται το ένα από το άλλο.π.χ η αύξηση της τιμής του πετρελαίου δεν εξαρτάται από την εξωτερική θερμοκρασία των Ν. Μουδανιών στις 12.00 το μεσημέρι.Υπάρχουν όμως μεγέθη που εξαρτώνται το ένα από το άλλο.Τέτοια είδαμε στο φύλλο εργασίας. Θυμίζω : " Από ένα κιλό ελιές βγάζουμε 0,2 κιλά λάδι. Πόσα κιλά λάδι βγάζουμε από 5 κιλά ελιές , από 10 κιλά ελιές κ.ο.κ" Μελετήσαμε έτσι την εξάρτηση των μεγεθών κιλά ελιές - κιλά λάδι. ( Βρείτε το στα "Έγγραφα" στον υποφάκελο "Συναρτήσεις").

Συνάρτηση είναι η διαδικασία που εκφράζει την εξάρτηση δύο μεγεθών. Παρουσιάζεται συνήθως με μια ισότητα δύο μεταβλητών με την οποία συνδέονται( αντιστοιχίζονται) οι τιμές του ενός ποσού x  με τις τιμές του άλλου y.

Στη δραστηριότητα 1 που λύσαμε στο φύλλο εργασίας η συνάρτηση που συνδέει τα κιλά λάδι ( y) με τα κιλά ελιές (x) είναι y = 0,2x.

Για κάθε τιμή του x ( κιλά ελιές ) μπορούμε να αντιστοιχίσουμε μία τιμή για τα κιλά λαδιού (y)  π.χ για x = 2  y =0,2 . 2 = 0,4.

Συνάρτηση = Εξάρτηση μεγεθών = Αντιστοίχιση τιμών.


11 - 11 - 2015

Προσέξτε την παρακάτω άσκηση :










10 - 11 - 2015

Για το διαγώνισμα θα διαβάσετε :

Θεωρία

Παράγραφος 1.1 
Τι είναι μεταβλητή , αριθμητική παράσταση , αλγεβρική παράσταση

Παράγραφος 1.2
Τι είναι εξίσωση  ( επίσης πρώτος- δεύτερο μέλος , γνωστοί - άγνωστοι όροι)
Πως μεταφέρουμε όρους από το ένα μέλος στο άλλο
Βήματα επίλυσης εξισώσεων

Ασκήσεις

Παράγραφος 1.1 
Αναγωγή ομοίων όρων
Απλοποίηση αλγεβρικών παραστάσεων ( επιμεριστική ιδιότητα και αναγωγή ομοίων όρων)
Υπολογισμός αριθμητικών τιμών παραστάσεων
Αλγεβρικές παραστάσεις που εκφράζουν την περίμετρο τετραπλεύρων , ορθογωνίων ή τετραγώνων.

Παράγραφος 1.2
Επίλυση εξισώσεων
Αδύνατες εξισώσεις - Ταυτότητες.


9 - 11 - 2015


Για το πρόχειρο διαγώνισμα α΄ τριμήνου υπενθυμίζω ότι η ύλη αφορά τις παραγράφους 1.1 και 1.2 της Άλγεβρας. Παραδείγματα κι ασκήσεις μπορείτε να βρείτε στα φυλλάδια ασκήσεων της Ηλεκτρονικής Σχολικής Τάξης καθώς κι εδώ στις Οδηγίες  λίγο παρακάτω στις αναρτήσεις με ημερομηνίες : 

21-10-2014 , 22-10-2014 , 24-10-2014 , 8/11/2014 , 13/11/014 , 20-10-2015 , 5-11-2015



5 - 11 - 2015

Για την απαλοιφή παρονομαστών στο πρώτο βήμα επίλυσης εξισώσεων α΄ βαθμού ακολουθούμε τα εξής:

1. Βρίσκουμε το Ε.Κ.Π των παρονομαστών.
2. Πολλαπλασιάζουμε όλους τους όρους της εξίσωσης με το Ε.Κ.Π
3. Απλοποιούμε κάθε παρονομαστή κλάσματος με το Ε.Κ.Π

Ας δούμε παρακάτω ένα παράδειγμα :










20 - 10 - 2015


Aναγωγή ομοίων όρων 

3 φουντούκια  +  5 φουντούκια  =  8 φουντούκια
3       x              +  5        x              =  8     x


Παραδείγματα :  3x + 4x = 7x 
                             5x - 9x = - 4x
                             4x - 5y + 2x - 6y - 3x = 4x + 2x  - 3x -5y - 6y = 3x - 11y
                


15 - 10 - 2015

Αριθμητική  ----->  Αριθμοί

Άλγεβρα ------> Μεταβλητές


Μεταβλητή είναι ένας αριθμός που μπορεί να μεταβάλλεται. Την συμβολίζουμε με ένα μικρό γράμμα του ελληνικού ή λατινικού αλφαβήτου(π.χ  : x , y , α, β , ω  κ.α.).

Αλγεβρική παράσταση είναι μία παράσταση που περιέχει πράξεις μεταξύ αριθμών και μεταβλητών
 ( π.χ : 3  + x - y).

Προσέξτε τα παρακάτω παραδείγματα :

1. Σε ένα αγρόκτημα ζουν 30 κατσίκια και πρόβατα.

     Αριθμός των κατσικιών :  x    ( μεταβλητή)
     Αριθμός προβάτων :  30 - x    (αλγεβρική παράσταση).


2. Ο Νίκος είναι κατά 5 εκατοστά ψηλότερος από τον Κώστα.

      Ύψος Νίκου :   x          ( μεταβλητή)
      Ύψος Κώστα :  x - 5    (αλγεβρική παράσταση).



13- 10 - 2015

Στο παρακάτω Link μπορείτε να βρείτε το τεστ που γράψαμε στις ιδιότητες δυνάμεων λυμένο!!Μπορείτε να το δείτε και να επαληθεύσετε τις λύσεις που δώσατε με τις προτεινόμενες.

Τεστ στις δυνάμεις


9 - 10 - 2015

Την επόμενη εβδομάδα θα γράψουμε τεστ στις δυνάμεις. Υπενθυμίζω τι πρέπει να διαβάσετε :

1. Τις ιδιότητες των δυνάμεων και τους ορισμούς δυνάμεων με αρνητικό εκθέτη για θεωρία.
2. Για ασκήσεις : α. Υπολογισμό δυνάμεων με αρνητική βάση , αρνητικό εκθέτη και με αρνητική βάση και αρνητικό εκθέτη. β. Μετατροπή παραστάσεων σε ισοδύναμες με μία δύναμη εφαρμόζοντας τις ιδιότητες δυνάμεων.

Για τη μελέτη σας θα σας βοηθήσουν οι οδηγίες και τα παραδείγματα που θα βρείτε παρακάτω σε αυτή τη σελίδα στις ημερομηνίες 15 - 1- 2014 , 7-10 - 2014 , 3 - 10 - 2014 , 30 - 9 - 2014 , 25 - 9 - 2014 , 24 - 9 - 2014. Αφορούν οδηγίες που έδωσα την περσινή σχολική χρονιά αλλά φέτος αφορούν κι εσάς και θα σας βοηθήσουν! Καλή μελέτη!


ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 - 2015


22/4/2015

Επίκεντρη γωνία λέγεται η γωνία που η κορυφή της βρίσκεται στο κέντρο του κύκλου.

Αντίστοιχο τόξο μιας επίκεντρης γωνίας λέγεται το τόξο που περιέχεται στην επίκεντρη γωνία.

Κάθε επίκεντρη γωνία έχει τις ίδιες μοίρες με το αντίστοιχο τόξο της.

Εγγεγραμμένη γωνία λέγεται η γωνία που η κορυφή της είναι πάνω στον κύκλο κι οι πλευρές της τέμνουν τον κύκλο.

Κάθε εγγεγραμμένη γωνία είναι το μισό της επίκεντρης που έχει το ίδιο αντίστοιχο τόξο μαζί της κι έχει τις μισές μοίρες από το αντίστοιχο τόξο της.





1/12/2014

Για να επιλύσουμε ένα πρόβλημα με τη βοήθεια εξισώσεων ακολουθούμε τα παρακάτω βήματα:

1. Βρίσκουμε τα δεδομένα του προβλήματος , το ζητούμενο και τα υπόλοιπα άγνωστα στοιχεία του.
2. Συμβολίζουμε με x το ζητούμενο και εκφράζουμε με τη βοήθεια του x  τα υπόλοιπα άγνωστα στοιχεία.
3. Σχηματίζουμε μια βοηθητική ισότητα που παριστάνει τη σχέση που συνδέει τα άγνωστα στοιχεία.
4. Μετατρέπουμε τη βοηθητική ισότητα σε εξίσωση και την λύνουμε.
5. Επαληθεύουμε το αποτέλεσμα που βρήκαμε.


13/11/014

Αδύνατες εξισώσεις - Ταυτότητες


Η εξίσωση 0x = 7 είναι αδύνατη. Δεν έχει δηλαδή καμία λύση , γιατί δεν υπάρχει αριθμός που αν πολλαπλασιαστεί με το μηδέν μας δίνει γινόμενο ίσο με 7.

Η εξίσωση 0x = 0 είναι ταυτότητα. Έχει δηλαδή άπειρες λύσεις και μάλιστα όλους τους πραγματικούς αριθμούς. Πράγματι κάθε αριθμός αν πολλαπλασιαστεί με το μηδέν μας δίνει γινόμενο ίσο με το μηδέν. Άρα κάθε πραγματικός αριθμός είναι λύση της παραπάνω εξίσωσης.

ΠΡΟΣΟΧΗ : Η εξίσωση 7x = 0 δεν είναι ούτε αδύνατη , ούτε ταυτότητα. Έχει μοναδική λύση που βρίσκεται αν διαιρέσουμε κανονικά με το συντελεστή του αγνώστου που είναι το 7.


8/11/2014

Βήματα επίλυσης εξίσωσης 1ου βαθμού :

1. Απαλοιφή παρονομαστών.  ( Βρίσκουμε το Ε.Κ.Π των παρονομαστών και πολλαπλασιάζουμε όλους τους όρους της εξίσωσης και στα δύο μέλη επί το Ε. Κ.Π.)

2. Απαλοιφή παρενθέσεων. ( Γίνεται με την εφαρμογή της επιμεριστικής ιδιότητας ή με τον κανόνα απαλοιφής παρενθέσεων όταν μπροστά της υπάρχει πρόσημο - ή +. Βλέπε στο μάθημα με ημερομηνία 18 - 9 - 2014 πιο κάτω).

3. Χωρίζουμε γνωστούς από αγνώστους.

Ας δούμε παρακάτω μια μυθοπλασία για την καλύτερη απομνημόνευση της διαδικασίας του χωρισμού γνωστών από αγνώστων για την εξίσωση : 2x - 5- x = 9 - 4x + 7. 


Οι όροι 2x ,- 5 , -x , 9 , -4x, 7 αποφάσισαν να κάνουμε ένα ρίβερ πάρτυ στις όχθες του ποταμού Ίσον. Τοποθετήθηκαν σε διάφορα σημεία και στις δύο όχθες του.
2x - 5 - x = 9 - 4x + 7. Τελικά μετά από αλλεπάλληλους καβγάδες μεταξύ τους ήταν αδύνατο να συνυπάρξουν όροι διαφορετικών πεποιθήσεων. Αποφάσισαν λοιπόν να χωριστούν σε ομοειδείς ομάδες. Στην αριστερή όχθη θα κάτσουν μόνοι άγνωστοι όροι και στη δεξιά οι γνωστοί. Ένας βαρκάρης υπήρχε κατά μήκος του ποταμού Ίσον. Όποιος όρος μεταφερόταν από τη μία όχθη στην άλλη πλήρωνε ως αντάλλαγμα στον βαρκάρη που τον περνούσε απέναντι τι λέτε; Την αλλαγή του προσήμου του. Καταδεχόταν να αλλάξει το πρόσημό του και μόνο τότε ο βαρκάρης τους περνούσε στην άλλη μεριά. Όσοι τώρα δεν χρειαζόταν να αλλάξουν όχθη αλλά παρέμεναν σταθεροί κι ακλόνητοι στη θέση τους δεν είχαν δοσοληψίες με τον βαρκάρη-μεταφορέα. Εκείνοι ήταν οι τυχεροί γιατί το πρόσημό τους δεν το πείραζε κανείς. Έμενε το ίδιο κι απαράλλακτο! Έτσι σε λίγο κατανεμήθηκαν διαφορετικά :
2x - x + 4x = + 5 + 7 - 9
Από τότε δεν μάλωσαν πια καθόλου. Πέρασαν ένα βράδυ υπέροχα δίπλα στο ποτάμι!


4. Αναγωγή ομοίων όρων.

5. Διαιρούμε με το συντελεστή του αγνώστου.



Παράδειγμα :    Να λύσετε την εξίσωση :  3( x - 4) - 2( 1 - x) = x + 2

Λύση : 3( x - 4) - 2( 1 - x) = x + 2

3x - 12 - 2 + 2x = x + 2   (Κάναμε απαλοιφή παρενθέσεων εφαρμόζοντας την επιμεριστική ιδιότητα).

3x + 2x - x = 2 + 12 + 2   ( Xωρίσαμε γνωστούς από αγνώστους ΠΡΟΣΟΧΗ : Όροι που παραμένουν στο ίδιο μέλος δεν αλλάζουν πρόσημο. Όροι που μετακινούνται από το ένα μέλος στο άλλο , αλλάζουν πρόσημο).

4x  = 16         ( Κάναμε αναγωγή ομοίων όρων).


4x         16  
---  =   ----                 ( Διαιρέσαμε με τον συντελεστή του αγνώστου που είναι το 4).
 4          4 


x  = 4 



24 - 10 - 2014

Εκτέλεση πράξεων :

Για να απλοποιήσουμε αλγεβρικές παραστάσεις , εκτελούμε τις πράξεις με την παρακάτω σειρά:

1. Επιμεριστική ιδιότητα
2. Αναγωγή ομοίων όρων.

Παραδείγματα

1. Να απλοποιήσετε την παράσταση : 3 ( x - 4) - 4x + 7

Λύση. 1ο βήμα : Εφαρμόζουμε την επιμεριστική ιδιότητα. 

3 ( x - 4) - 4x + 7 = 3x - 12 - 4x + 7

2o βήμα : Κάνουμε αναγωγή ομοίων όρων.

3 ( x - 4) - 4x + 7 = 3x - 12 - 4x + 7 = 3x - 4x - 12 + 7 = -1x - 5 = -x - 5


2. Δίνεται η παράσταση : Α = 2 ( 3x - 5) + x - 5 ( 2 - x) - 9
    α.  να την απλοποιήσετε   , β.  να υπολογίσετε την τιμή της όταν x = 4

Λ ύση  α.  Α =  2 ( 3x - 5) + x - 5 ( 2 - x) - 9 = 6x - 10 + x - 10 + 5x - 9 = 6x + 1x + 5x - 10 - 10 - 9 = 12x - 29

β. Για να υπολογίσουμε την τιμή της παράστασης  για x = 4  , θα θέσουμε όπου x τον αριθμό 4 στην τελική απλοποιημένη μορφή της Α.

Α = 12x - 29 = 12 . 4 - 29 = 48 - 29 = 19

Άρα η τιμή της παράστασης Α  για x =4  είναι 19.



22 - 10 - 2014

Αναγωγή ομοίων όρων

Παραδείγματα

3x + 2x = 5x
4α + 3α + 7α = 14α
4x - 3x + 2x = 3x
3x + 5x - 10x = -2x

5α + 3α + 4β - 6α + 3β - 10β = 5α + 3α - 6α + 4β + 3β - 10β = 2α - 3β


21 - 10 - 2014

Η έννοια της μεταβλητής.

1. Υπάρχουν αριθμοί που είναι σταθεροί και δεν μεταβάλλονται.
Υπάρχουν όμως και αριθμοί που μεταβάλλονται και ονομάζονται μεταβλητές. Μια μεταβλητή τη συμβολίζουμε με ένα μικρό γράμμα του ελληνικού ή λατινικού αλβαβήτου. π.χ  : α, β , γ , ω , x , y , z , t  κλπ.

2. Αριθμητική παράσταση είναι μία παράσταση που περιέχει αριθμούς και σύμβολα πράξεων.
   π.χ : 5 . ( 6 + 7) - 2 . 3

3. Αλγεβρική παράσταση είναι μία παράσταση που περιέχει αριθμούς , σύμβολα πράξεων και μεταβλητές. π.χ  : 3 . x + 2 . α - 7


ΠΑΡΑΔΕΙΓΜΑΤΑ

Να εκφράσετε με αλγεβρικές παραστάσεις τις εκφράσεις :

Το τριπλάσιο ενός αριθμού :                                     3 . x
Ένας αριθμός αυξημένος κατά 9  :                           x + 9
Το διπλάσιο ενός αριθμού ελαττώνεται κατά 3 :    2 . x -3


15 - 10 - 2014

Δυνάμεις με αρνητικό εκθέτη.

   -ν           1
α         =  --------
               ν
                α



   α      -ν                 β        ν
( ---- )           = (  -------- )
  β                          α





7 - 10 - 2014

5. Για να υψώσουμε μία δύναμη σε έναν εκθέτη αφήνουμε τη βάση ίδια και πολλαπλασιάζουμε τους εκθέτες.

Ιδιότητες δυνάμεων.

         μ         ν               μ + ν         
1.  α     .   α         =    α


           μ       ν               μ - ν         
2.  α     :   α         =    α


                   ν                ν        ν
3.   ( α . β )           =  α    .   β


                   ν            ν      ν
4.  ( α : β )        =  α   :  β

                   
           μ   ν                μ . ν
5.  (α     )          =   α


3 - 10 - 2014

3. Για να υψώσουμε ένα γινόμενο σε έναν εκθέτη υψώνουμε κάθε παράγοντά του σε αυτόν τον εκθέτη.

4. Για να υψώσουμε ένα πηλίκο σε ένα εκθέτη υψώνουμε κάθε όρο του σε αυτόν τον εκθέτη.

Παραδείγματα στις ιδιότητες των δυνάμεων :

   4        6            10                   11        7            4            4       4                  4            4
2     .  2        =  2               ,   5        :  5      =  5          ,   3   .  7      = ( 3 . 7 )      =  21


    3          3                       3           3
45     :  9       =  ( 45 : 9 )       =  5



30 - 9 - 2014

Ιδιότητες δυνάμεων 

1. Για να πολλαπλασιάσουμε δύο δυνάμεις με την ίδια βάση ,  αφήνουμε τη βάση ίδια και προσθέτουμε τους εκθέτες.

2. Για να διαιρέσουμε δύο δυνάμεις με την ίδια βάση , αφήνουμε τη βάση ίδια και αφαιρούμε τους εκθέτες.


25 - 9 - 2014

Παρατήρηση.

                         6
Η δύναμη (- 4 )       είναι θετικός αριθμός γιατί έχει βάση αρνητικό αριθμό κι εκθέτη άρτιο (ζυγό).

                                         6
Η παράσταση όμως  - 4       είναι αρνητικός αριθμός  γιατί το μείον μπροστά δεν ανήκει στην βάση της δύναμης αλλά είναι το πρόσημο του αριθμού που δηλώνει ότι πρόκειται για αρνητικό αριθμό.

                            7                       7                                 126                    126
Παρομοίως ( - 3)       < 0 και  - 3      < 0. Ακόμη (- 5 )            > 0   ,  - 5              < 0


24 - 9 - 2014

Δυνάμεις

Δύναμη με βάση θετικό αριθμό είναι θετικός αριθμός.

Δύναμη με βάση αρνητικό αριθμό κι εκθέτη άρτιο ( ζυγό) είναι θετικός αριθμός.

Δύναμη  με βάση αρνητικό αριθμό κι εκθέτη περιττό ( μονό) είναι αρνητικός αριθμός.

Παραδείγματα :

       2         
(-2)         =  ( -2) ( -2)  =  4


        3
(-2)      =   ( -2) ( -2) (-2) =  - 8



19 - 9 - 2014

Προτεραιότητα πράξεων 

1. Πράξεις μέσα στις παρενθέσεις
2. Δυνάμεις
3. Πολλαπλασιασμοί - Διαιρέσεις
4. Προσθέσεις - Αφαιρέσεις.

Δοκιμάστε να βρείτε τις τιμές των παραστάσεων :


α. 4 . (-7) - 21: (-7)+3 . 6
β. 2. ( 5 - 7 )+ (12 - 20 ): ( - 4)
γ. 3 . 5 - 2 . (-6- 4 )+32 : ( -8)
δ. 11 . (-4) +20 : (-5)+36 :(-9)-6 . (-4)
ε. (-8+4-7+12). ( - 5 ) +(9-15):(-3)


18 - 9 - 2014

Aπαλοιφή παρενθέσεων :

1. Όταν μπροστά από μία παρένθεση υπάρχει το πρόσημο συν (+) , απαλοίφουμε την παρένθεση και το συν και γράφουμε όλους τους όρους όπως είναι. 
π.χ : +( -3 + 7 - 6 + 9) = -3 + 7 - 6 +9


2.  Όταν μπροστά από μία παρένθεση υπάρχει το πρόσημο μείον (-) , απαλοίφουμε την παρένθεση και το μείον και γράφουμε όλους τους όρους με αλλαγμένα πρόσημα. 
 π.χ : -(-3 +7 - 6 + 9) = + 3 - 7 + 6 - 9

ΘΕΜΑΤΑ  ΓΙΑ ΣΥΖΗΤΗΣΗ :

1.  Βρείτε δύο αριθμούς με άθροισμα μηδέν και γινόμενο - 64.

2. Συμπληρώστε τα κενά ( τελίτσες) με τα πρόσημα που λείπουν ώστε να ισχύουν οι ισότητες :

α.    ......  9 -  15 =  - 6

β.    ..... 8 ...... 7 = - 15

γ.      - 6 ....... 6  = -12

δ.     ......... 5 ........   7 = + 2


17 - 9 - 2014

Παιδιά σας εύχομαι καλή σχολική χρονιά με υγεία και πρόοδο!

Θυμίζω τους κανόνες προσήμων για τις πράξεις θετικών κι αρνητικών αριθμών.

1.  Στην πρόσθεση βάζουμε το πρόσημο του μεγαλυτέρου και προσθέτουμε τους όρους όταν οι αριθμοί είναι ομόσημοι , ενώ τους αφαιρούμε όταν είναι ετερόσημοι.
     π.χ :  -7 + 11 = +3
             + 7 - 11 = -3
             -7 - 11 = -18

2. Στο πολλαπλασιασμό και τη διαίρεση ισχύουν οι παρακάτω κανόνες προσήμων :
      + . - =  -               + . + = + 
     - . + =  -                 - . - = +

  


ΣΧΟΛΙΚΟ ΕΤΟΣ 2013 - 2014


10 - 4 - 2014

Για όλη την Β΄ τάξη γυμνασίου.

Για την εργασία στη στατιστική που θα ετοιμάσετε μετά το Πάσχα θυμίζω μερικά στοιχεία :


1η σελίδα : Εξώφυλλο. Περιλαμβάνει τον τίτλο της εργασίας σας και μια εικόνα σχετική με το θέμα που επιλέξατε.

2η σελίδα. Πρόλογος. Ένα κείμενο από 3 έως 10 σειρές. Εδώ    πρέπει να λέτε ότι η δημοσκόπηση  έγινε  στο γυμνάσιο   Σημάντρων ,ότι ρωτήθηκαν 20 μαθητές σχετικά με το   θέμα που επιλέξατε. Μπορείτε στη συνέχεια να εξηγήσετε τους λόγους για τους οποίους επιλέξατε το συγκεκριμένο θέμα και τυχόν κοινωνικές προεκτάσεις του. Mπορείτε βέβαια να ρωτήσετε και περισσότερους από 20 μαθητές του σχολείου μας. Επίσης όσοι επιλέξετε να αναρτήσετε το ερώτημα στο Face Book - και βλέπω ότι είστε αρκετοί - θα έχετε ακόμη μεγαλύτερο μέγεθος δείγματος. Ακόμη καλύτερα! Θέλω όμως τότε να αναγράφεται στον πρόλογο ότι το ερώτημα τέθηκε και στο Face Book.

3η σελίδα : Πίνακας συχνοτήτων. Ένα παράδειγμα πίνακα συχνοτήτων είναι το παρακάτω :



Ποδοσφαιρική ομάδα

Αριθμός μαθητών

Σχετική συχν.

Σχετική συχν. %

ΠΑΟΚ

    12

      0,24

        24

ΑΡΗΣ

     8

      0,16

         16

ΠΑΟ

    10 

       0,2

         20

ΟΛΥΜΠΙΑΚΟΣ

      5

     0,1

         10

ΑΕΚ

      6

      0,12

         12

ΗΡΑΚΛΗΣ

       9

      0,18

         18

ΣΥΝΟΛΟ

    50

        1

         100










 

Η σχετική συχνότητα υπολογίζεται διαιρώντας την κάθε συχνότητα δια το σύνολο (μέγεθος του δείγματος).

 π.χ   12 : 50 = 0,24

         8 : 50  = 0,16  κ.λ.π.

Η σχετική επί τοις εκατό συχνότητα υπολογίζεται πολλαπλασιάζοντας κάθε σχετική συχνότητα επί  το 100.

π.χ 0,24 Χ 100 = 24.

4η σελίδα : Ραβδόγραμμα. Θα το κατασκευάσετε σε χαρτί μιλιμιτρέ σε οριζόντιο προσανατολισμό. Κάθε μεγάλο τετραγωνάκι του τετραγωνισμένου χαρτιού θα το μετράτε ως 10.


5η σελίδα : Κυκλικό διάγραμμα. Θυμίζω τον τύπο :

γωνία = 360 Χ σχετική συχνότητα. 

Στον πίνακα του προηγούμενου παραδείγματος η γωνία που θα αντιστοιχεί στον ΠΑΟΚ  υπολογίζεται από την πράξη :

360 Χ 0,24 = 86,4 με στρογγυλοποίηση 86 μοίρες.

Για τον Άρη η αντίστοιχη γωνία υπολογίζεται :

360 Χ 0,16 = 57,6 με στρογγυλοποίηση 58 μοίρες. κ.λ.π.


6η σελίδα. Επίλογος. Εδώ καταγράφονται τα συμπεράσματα - αποτελέσματα της έρευνας. 

Στο προηγούμενο παράδειγμα ως συμπεράσματα μπορούμε τα πούμε τα εξής :

Η πλειοψηφία των μαθητών με ποσοστό 24% επέλεξαν ως αγαπημένη τους ομάδα τον ΠΑΟΚ. Η ομάδα που συγκέντρωσε το μικρότερο ποσοστό προτίμησης είναι ο Ολυμπιακός. Ακολουθεί ως δεύτερη επιλογή με σχετικά μικρή διαφορά από την πρώτη ο ΠΑΟ με ποσοστό 20%.


25 - 9-  2013

Β2
Για το επόμενο μάθημα να θυμηθείτε τους κανόνες προσήμων.

Θυμίζω : 
1. Βάζουμε πάντα το πρόσημο του μεγαλυτέρου.         
2. αν οι αριθμοί έχουν ίδιο πρόσημο κάνουμε πρόσθεση π.χ -7 - 4 = - 11 
3. αν οι αριθμοί έχουν διφορετικά πρόσημα κάνουμε αφαίρεση π.χ -7 + 4= -3.


Στον πολλαπλασιασμό ρητών αριθμών ισχύουν οι παρακάτω κανόνες προσήμων :

+ .+ = +
- . - = +

+.- = -
- . + = -

Η προτεραιότητα των πράξεων είναι :
1. Πράξεις στις παρενθέσεις
2. Δυνάμεις
3. Πολλαπλασιασμοί - διαιρέσεις
4. Προσθέσεις - αφαιρέσεις.

Για το επόμενο μάθημα έχετε τις ασκήσεις από τα φύλλα εργασίας που σας έδωσα.
Τα φύλλα εργασίας θα τα βρείτε παρακάτω :

Πρόσθεση ρητών 1

Πρόσθεση ρητών 2

23-9-2013

Β1
Στον πολλαπλασιασμό ρητών αριθμών ισχύουν οι παρακάτω κανόνες προσήμων :

+ .+ = +
- . - = +

+.- = -
- . + = -

Η προτεραιότητα των πράξεων είναι :
1. Πράξεις στις παρενθέσεις
2. Δυνάμεις
3. Πολλαπλασιασμοί - διαιρέσεις
4. Προσθέσεις - αφαιρέσεις.

Για το επόμενο μάθημα έχετε να υπολογίσετε τις τιμές των παραστάσεων :

α. 4 . (-7) - 21: (-7)+3 . 6
β. 2. ( 5 - 7 )+ (12 - 20 ): ( - 4)
γ. 3 . 5 - 2 . (-6- 4 )+32 : ( -8)
δ. 11 . (-4) +20 : (-5)+36 :(-9)-6 . (-4)
ε. (-8+4-7+12). ( - 5 ) +(9-15):(-3)


13-9-2013


Καλή η νέα σχολική χρονιά.
Εύχομαι υγεία και καλή πρόοδο!

Για το επόμενο μάθημα καλό είναι να θυμηθείτε τους κανόνες προσήμων 
στην πρόσθεση ρητών αριθμών.

Θυμίζω : 
1. Βάζουμε πάντα το πρόσημο του μεγαλυτέρου.         
2. αν οι αριθμοί έχουν ίδιο πρόσημο κάνουμε πρόσθεση π.χ -7 - 4 = - 11 
3. αν οι αριθμοί έχουν διαφορετικά πρόσημα κάνουμε αφαίρεση π.χ -7 + 4= -3.

Για το επόμενο μάθημα έχετε τη άσκηση 2 από το φύλλο εργασίας που σας μοίρασα και τις ασκήσεις 1, 2 από το δεύτερο φυλλάδιο : ΑΣΚΗΣΕΙΣ που σας μοίρασα.

Κάνοντας κλικ παρακάτω θα βρείτε τα φύλλα εργασίας με τις ασκήσεις που έχετε.


Πρόσθεση ρητών 1

Πρόσθεση ρητών 2




ΣΧΟΛΙΚΟ ΕΤΟΣ 2010 - 2011


24 - 9 - 2010

ΕΠΑΝΑΛΗΨΗ ΣΤΟΙΧΕΙΩΔΩΝ ΓΝΩΣΕΩΝ
         ΑΠΟ ΤΗΝ Α΄ ΓΥΜΝΑΣΙΟΥ


1. Όταν σε μια παράσταση σημειώνονται πολλές πράξεις ισχύει η παρακάτω προτεραιότητα πράξεων :

α.  Πράξεις στις παρενθέσεις
β.  Δυνάμεις
γ.  Πολλαπλασιασμοί και διαιρέσεις
δ   Προσθέσεις και αφαιρέσεις.

Παράδειγμα :    ( 3+5 * 7 ) : 2 + 24 : 8-5 =
                        =  ( 3 +35 ) :2 + 24 : 8 - 5 =
                         = 38 : 2 + 24 :8 - 5 =
                           = 19 + 3 -5 = 22 - 5 = 17

2.   Ισχύουν οι εξής κανόνες πράξεων θετικών και αρνητικών αριθμών :

  α. Στην πρόσθεση βάζουμε πάντοτε το πρόσημο του μεγαλύτερου αριθμού και κάνουμε πρόσθεση  όταν οι αριθμοί έχουν το ίδιο πρόσημο , ενώ κάνουμε αφαίρεση αν έχουν διαφορετικό :

Παράδειγμα :   - 5 + 8 = +3
                          - 6 +4 = -2
                          -4 - 8 = - 12
                            7 - 13 = - 6

Στον πολλαπλασιασμό και την διαίρεση ισχύουν οι παρακάτω κανόνες προσήμων :

-* + =  -                           - : + = -

+ * - =  -                        + : - = -  

+ * + = +                       + : + = +

- * - = +                         - : - = +

Παράδειγμα :    ( - 3) * 7= -21                    ,      ( - 21) : 3 = -7
                           6 * ( -3 ) = - 18                  ,       36 : ( -6 ) = -6    
                           ( - 5 ) * (-7) = +35             ,      ( - 54) : ( -9) = 6     


3. Για τις πράξεις κλασμάτων θυμίζω ότι ομώνυμα χρειάζονται στην πρόσθεση και την αφαίρεση κλασμάτων . Η διαίρεση μετατρέπεται σε πολλαπλασιασμό αφήνοντας το πρώτο κλάσμα ίδιο και αντιστρέφοντας το δεύτερο κλάσμα.

                       Παράδειγμα :    1          3           1        5           5
                                               ---    :   ----   =   ----  *  ------  =   -------
                                                2           5          2          3          6



28 - 9 - 2010


Mεταβλητή ονομάζουμε έναν αριθμό που μπορεί να μεταβάλλεται και να παίρνει όποια τιμή θέλουμε εμείς. Τη συμβολίζουμε με ένα μικρό γράμμα του ελληνικού ή λατινικού αλφαβήτου. ( π.χ : α , β , γ ,x ,y,z,ω ,r , t  κ.α).


Αριθμητική παράσταση είναι μια παράσταση που  περιέχει πράξεις με αριθμούς. (π.χ  : 2*(5+4)-12)

Αλγεβρική παράσταση είναι μια παράσταση που  περιέχει πράξεις με αριθμούς και μεταβλητές .
( π.χ : 2*χ-(5+α)-4 )

Παράδειγμα : Να βρείτε την τιμή της παράστασης : Α = 2*(x -2) +6  , όταν χ = 5.

Λύση :  Α= 2 * ( 5 - 2) +6 = 2 * 3 +6 = 6 + 6 = 12




1 - 10 - 2010

ΒΗΜΑΤΑ ΕΠΙΛΥΣΗΣ ΕΞΙΣΩΣΗΣ Α΄ ΒΑΘΜΟΥ

1 Απαλοίφουμε τους παρονομαστές πολλαπλασιάζοντας με το Ε.Κ.Π των παρονομαστών.

2. Απαλοίφουμε τις παρενθέσεις ( συνήθως με την επιμεριστική ιδιότητα).

3. Χωρίζουμε γνωστούς από αγνώστους ( Δες στην ανάρτηση : ΜΑΘΗΜΑΤΙΚΗ ΜΥΘΟΠΛΑΣΙΑ στον υποτομέα ΠΡΟΣΧΗΜΑΤΙΚΗ ΜΥΘΟΠΛΑΣΙΑ την 2 περίπτωση ).

4. Αναγωγή ομοίων όρων.

5.  Διαιρούμε με τον συντελεστή του αγνώστου

Παράδειγμα : Να λυθεί η εξίσωση :  2 * ( x-1 ) + 5 = 3x  - 1

Λύση : 2 *x- 2*1 + 5 = 3x -1 <=> 2x - 2 + 5 = 3x- 1<=> 2x - 3x = 2 - 5 -1 <=> -1x = -4 <=> x = 4



5 - 10 - 2010


Υπενθυμίζω την επιμεριστική ιδιότητα :

α (β + γ ) = αβ + αγ και  α ( β - γ ) = αβ - αγ



29 - 10 - 2010

Το μήνυμα που μου έστειλε συμμαθητή σας , το πήρα κι ευχαριστώ!

Υπενθυμίζω ότι η θεωρία που πρέπει να γνωρίζετε βρίσκεται στα τρία γαλάζια πλαίσια του μαθήματος 1.5.

Παραδείγματα :  α. Μπορούμε να προσθέτουμε τον ίδιο αριθμό στα μέλη μιας ανισότητας :

Αν  5>2 τότε και 5+3 >2+3. Πράγματι 8 > 5.

β.  Ομοίως και στην  αφαίρεση :   9 > 6 τότε 9-4 > 6-4 . Πράγματι : 5>2.

γ. Στον πολλαπλασιασμό :

αν πολλαπλασιάζουμε με θετικό αριθμό δεν αλλάζει η φορά.

7 > 3 τότε 7*2 > 3 * 2. Πράγματι :  14 > 6.

Όμως  όταν πολλαπλασιάζουμε αρνητικό αριθμό αλλάζει η φορά:

 7 >3 τότε 7*(-2) < 3 *(-2) Πράγματι : -14 <-6

δ. Στην διαίρεση παρομοίως όπως στον πολλαπλασιασμό :
12>4   => 12 : 4 > 4 :4 δηλαδή 3 >1.
Όμως :  12 > 4 =>  12 : ( -4 ) < 4 : ( -4 )  δηλαδή  -3 < -1

Ερωτήσεις κατανόησης
Να χαρακτηρίσετε ως Σ ή Λ τις προτάσεις :

1.  Αν α>β τότε   α-5< β-5 ( είναι λάθος διότι όταν αφαιρούμε και στα δύο μέλη δεν αλλάζει η φορά).

2.  α <2 τότε  3α< 6  ( είναι σωστή διότι όταν πολλ/ζω με θετικό δεν αλλάζει η φορά).

3. Αν χ < 5 τότε -2χ< -10 ( Λάθος γιατί πολλαπλασιάσαμε με -2 και έπρεπε να αλλάξει η φορά).


1-11-2010

Για το διαγώνισμα πολύ καλά από θεωρία τα γαλάζια πλαίσια της παραγράφου 1.5 σελ 31-32. Τόσο τους κανόνες όσο και τις σχέσεις με τα α,β,γ.
Επίσης ερωτήσεις κατανόησης του βιβλίου σωστού -λάθους  , συμπλήρωσης κενών.
Επίσης λίγο πιο πίσω στην ανάρτηση της 29-10-2010 θα βρείτε στοιχεία θεωρίας , παραδείγματα και ερωτήσεις σωστού λάθους.

Από ασκήσεις μελετήστε προσεκτικά τις 3 πρώτες εφαρμογές του βιβλίου σελ 35-36.

Ιδιαίτερη προσοχή στο τελευταίο βήμα όταν ο συντελεστές του αγνώστου είναι αρνητικός. Τότε αλλάζει η φορά
                                                    3χ       9
Παραδείγματα : α. 3χ>9  <=>   ----- > ------  <=>  χ   > 3
                                                     3        3

                                        -3χ           9
β. Όμως  -3χ>9  <=>    -------  <  ---------  <=>   χ< -3
                                          -3             -3


Επίσης προσοχή στην γραφική παρουσίαση των λύσεων μια ανίσωσης  σε μια ευθεία. Οι εφαρμογές του βιβλίου είναι κατατοπιστικές. Τέλος επισημαίνω ότι μια ανίσωση έχει άπειρες λύσεις τις οποίες γεωμετρικά τις παριστάνουμε καλύτερα με την ευθεία που λέγαμε πρωτύτερα.